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Immune Cell–Stromal Circuitry in Lupus Photosensitivity
Ji Hyun Sim,*,† William G. Ambler,*,‡ Isabel F. Sollohub,* Mir J. Howlader,*,x

Thomas M. Li,* Henry J. Lee,{ and Theresa T. Lu*,†,‡

Photosensitivity is a sensitivity to UV radiation (UVR)
commonly found in systemic lupus erythematosus
(SLE) patients who have cutaneous disease. Upon even
ambient UVR exposure, patients can develop inflam-
matory skin lesions that can reduce the quality of life.
Additionally, UVR-exposed skin lesions can be associ-
ated with systemic disease flares marked by rising au-
toantibody titers and worsening kidney disease. Why
SLE patients are photosensitive and how skin sensitiv-
ity leads to systemic disease flares are not well under-
stood, and treatment options are limited. In recent
years, the importance of immune cell–stromal interac-
tions in tissue function and maintenance is being in-
creasingly recognized. In this review, we discuss SLE as
an anatomic circuit and review recent findings in the
pathogenesis of photosensitivity with a focus on immune
cell–stromal circuitry in tissue health and disease. The
Journal of Immunology, 2021, 206: 302–309.

S
ystemic lupus erythematosus (SLE) is a chronic au-
toimmune disease that is strikingly associated with
photosensitivity, a sensitivity to UV radiation (UVR)

that results in the development of skin lesions. Notably, these
lesions can be associated with triggering of systemic disease
flares (Fig. 1). Marked by circulating autoantibodies and in-
flammatory damage of the kidneys, brain, and heart among
other organs, SLE is strongly associated with cutaneous lupus
erythematosus (CLE). CLE can occur with and without sys-
temic disease and can be divided into acute, subacute, and
chronic forms. Acute CLE is most often associated with SLE,
although SLE patients can have any type of CLE (1–4).
Defined by the American College of Rheumatology as “a
skin rash as a result of an unusual reaction to sunlight” (5),
photosensitivity is a common manifestation of SLE (1–4).
Current treatment options for photosensitivity are limited,
with first-line treatment involving topical steroids, calcineurin

inhibitors, and systemic antimalarials such as hydroxychloroquine,
which were fortuitously found to be effective during World
War II (6). Reduced UVR exposure through sun avoidance,
protective clothing, and sunscreen is effective and a mainstay
in current therapy in the prevention of photosensitivity and its
sequela (7–9). However, reduced UVR exposure can lead to
reduced levels of UVR-dependent vitamin D synthesis seen in
SLE patients (10), which is thought to contribute to poor
bone health and osteoporosis (11). Furthermore, vitamin D is
important in immune regulation; reduced vitamin D can
potentially exacerbate SLE and its symptoms (12). Photo-
sensitivity has been shown to have a large negative impact on
quality of life (13–16). Understanding the mechanisms of
photosensitivity will provide insights into pathogenesis and
treatment of both CLE and SLE.
The histopathology of CLE lesions hints at some of the

potential immune cell–stromal interactions. Although the
lesions of acute, subacute, and chronic CLE have some dis-
tinct features, dermo-epidermal junction changes with base-
ment membrane vacuolization and apoptotic keratinocytes are
seen across the spectrum of changes (17, 18). There is often a
perivascular- and periadnexal-mixed infiltrates composed
of lymphocytes and dendritic cells (DCs) that can range from
sparse to pronounced. Neutrophils can be found in early acute
lesions and more densely in some of the rarer forms of CLE
lesions (19). Monocytes, macrophages, DCs, and plasmacy-
toid DCs (pDCs) are also found in cutaneous lesions (20, 21).
Langerhans cells (LCs) have been noted to be less dendritic in
morphology and to be present in fewer numbers (22). Linear
immune deposits and complement deposited at the dermal-
epidermal junction form a “lupus band.” Nonlesional skin,
despite the absence of overt inflammation, also shows ab-
normalities, and positive lupus bands, endothelial activation,
and fewer LCs can be seen (18, 23, 24). Epidermal and
dermal stromal cells such as keratinocytes and endothelial cells
are involved then, as are resident immune cells such as LCs
and infiltrating cells such as monocytes, neutrophils, pDCs,
and T cells.
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UVR is a form of electromagnetic radiation that is sub-
divided into the three categories of UVA (320–400 nm),
UVB (290–320 nm), and UVC (200–290 nm) light. UVC
emitted by the sun is filtered by the atmosphere and does
not reach Earth’s surface. The majority, some 90%, of UVB
is similarly filtered. The shorter UVB waves that do reach
the skin do not penetrate deeper than the epidermis,
whereas the longer UVA waves penetrate into the dermis
(3, 25, 26). UVA contributes to reactive oxygen species
generation and photoaging, whereas UVB is more effective
at generating DNA breaks. Both UVA and UVB are con-
sidered to contribute to the proapoptotic and consequent
immune suppressive effects and to photosensitive lesion
development. However, UVA1 (340–400 nm) in the longer
range of UVA waves can have therapeutic effects, amelio-
rating systemic disease in a murine lupus model and in
limited clinical studies. Its efficacy is attributed to the in-
duction of apoptosis specifically of T and B cells, thus
targeting the disease-causing cells. The relative contribu-
tions of the different UVR components remain to be fully
elucidated.
Work over the past several decades has led to a model in-

volving skin-intrinsic dysfunction combined with immune cell
dysfunction. Work by Golan et al. and Furukawa et al. in the
late 1990s showed that SLE keratinocytes were more sensitive
to UVR-induced apoptosis (27, 28), a characteristic recently
confirmed by Kahlenberg and colleagues (29), suggesting a
keratinocyte-intrinsic contribution to the UVR-induced skin
injury. These studies, combined with earlier findings, in-
cluding those of Casciola-Rosen et al. that SLE autoantibodies
bind Ags expressed by UVR-exposed keratinocytes (30, 31),
contribute to the prevailing model that UVR causes greater
keratinocyte apoptosis in SLE and subsequent higher auto-
antigen levels, opportunity for the selection of autoantibodies,
and autoantibody-mediated damage. The autoantigen levels
are further increased by reduced clearance of apoptotic cells in
SLE (32, 33). More recent work has focused on the mediators
of skin inflammation, whereby innate immune cell accumu-
lation is followed by lymphocytic infiltration, leading to the
clinical lupus cutaneous lesions (34), and the role and regu-
lation of IFN-I (35). In addition to contributing to tissue
injury, immune cells can help to promote normal tissue

function, as the complex circuitry between immune cells and
the resident epithelial, mesenchymal, and endothelial cells of
the “stromal” compartment have been increasingly appreci-
ated across multiple systems (36). In this review, we discuss
recent findings in the pathogenesis of lupus photosensitivity
from the framework of circuitry. First, we discuss SLE in
terms of anatomic circuitry to identify potential loci for
pathogenesis. Second, we discuss immune cell–stromal cir-
cuitry that has recently been shown to contribute to patho-
genesis at some of these loci. We propose this framework to
help us all think about tissue injury and autoimmunity in
disease.

Photosensitivity and SLE pathogenesis as an anatomic circuit

Viewing SLE pathogenesis through the lens of anatomic im-
mune circuitry (37–39) leads to the identification of several
potential loci in which dysfunction could contribute to disease
(Fig. 2). Assuming that response to UVR exposure in part
stimulates lymph nodes and are not solely dependent on tissue
activities of resident lymphocytes such as skin-resident memory
T cells (40), the sensitive keratinocytes will apoptose and release
autoantigens. These autoantigens then are brought from the
skin via lymphatic vessels in association with DCs or as soluble
molecules to the draining lymph node, in which autoimmune
T and B cells become activated and develop into effector cells.
The effector T cells and Abs secreted by plasma cells will leave
via the efferent lymphatics, pool into the blood circulation by
way of the thoracic duct and then home from the blood into
affected tissues. In a healthy host, inflammation at the site of
injury likely leads to tissue repair and subsequent regulation
of the immune response. A potential scenario in SLE is that
mechanisms that turn off the response fail, leading to con-
tinued inflammation and tissue damage. The autoantibodies,
potentially in the form of immune complexes (ICs), may
also circulate to other tissues such as the kidneys, where they
can deposit and cause inflammation. Similarly, lymphocytes
can enter these tissues, especially in chronic inflammation
perhaps caused by IC deposition or systemic inflammatory
cytokines.
Although autoimmune lymphocytes are a prerequisite, they

may be insufficient for disease manifestations. Pathophysio-
logic function of tissues in the immune circuit may addi-
tionally contribute. Below, we focus on the skin and the
connection from events in the skin to systemic disease. Because
SLE is fundamentally an immune disorder and the importance
of immune cells in tissue function is increasingly appreciated,

FIGURE 2. SLE as an anatomic immune circuit. The circuitry that may

contribute to propagating information from the skin to draining nodes and

systemically based on the principles of immune circuitry.

FIGURE 1. Photosensitivity in lupus. In patients with CLE or SLE, even

ambient exposure to sunlight can trigger the development of skin lesions. In

SLE patients, this photosensitivity can be associated with flares of systemic

disease. Photos from American College of Rheumatology Image Library (c)

2020 American College of Rheumatology.
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we discuss recent findings of immune cell–stromal circuitry
that can contribute to disease pathophysiology.

Immune cell–stromal mechanisms in photosensitivity

Dysfunctional LC-keratinocyte circuit. We have recently shown
that LCs protect UVR-induced skin injury by limiting
keratinocyte apoptosis via epidermal growth factor receptor
(EGFR) ligands. The key mediator in this axis is LC-expressed
a disintegrin and metalloproteinase 17 (ADAM17) (24), a
requisite sheddase for the activation of many EGFR ligands
among other substrates (41). UVR activates LC ADAM17 to
cleave EGFR ligands in a cis-dependent manner, providing
these ligands to keratinocyte EGFR to limit UVR-induced
keratinocyte apoptosis (24). Remarkably, LCs in photosensitive
murine lupus models showed reduced ADAM17 mRNA
expression and enzyme activity, suggesting that intrinsic LC
dysfunction could contribute to photosensitivity. Nonlesional
human SLE skin showed reduced epidermal EGFR
phosphorylation and LC numbers, suggesting that SLE skin
has an inadequate source of EGFR ligands perhaps from reduced
LC numbers if not LC ADAM17 function. Together, our study
suggested a mechanism whereby LC ADAM17 provides EGFR
ligands that maintain skin barrier integrity (Fig. 3A), and a
dysfunctional LC-keratinocyte axis leads to a propensity to
photosensitivity. Topical EGFR ligand supplementation
ameliorated photosensitivity in lupus models, pointing to the
potential therapeutic use of EGFR ligands in photosensitivity.
The LC-keratinocyte axis is consistent with the idea that

immune cells, especially at barrier surfaces, can be tissue-
protective. Keratinocyte ADAM17 expression and generation
of EGFR ligands are critical for skin barrier maintenance during

development but seem to play a minor role at homeostasis in
adults (42). We also showed that LCs do not seem to play a
major role in homeostatic adults, suggesting that LCs act as
a dominant EGFR ligand source in times of stress, in-
cluding UVR exposure. These data echo the role that DCs
have in promoting the survival of mesenchymal cells in
inflamed lymph nodes and fibrotic dermis (43, 44) and the
role the EGFR ligand amphiregulin plays in protecting the
epithelial barrier in inflamed lung and gut by regulatory
T cells (Tregs) and ILC2, respectively (45, 46). Immune cells
can serve as guardians of tissue function, shoring up stromal
cells in times of stress by providing extra resources. Dys-
function of this protective immune cell–stromal circuitry,
then, can lead to tissue injury and damage.
Keratinocytes can also regulate LC function. Keratinocytes

are known to provide IL-34, which is required for LC dif-
ferentiation and continued self-renewal at homeostasis (47).
IL-34 has also been shown to activate TGFb to retain LCs in
the skin (48). Additionally, keratinocyte MyD88, IL-1b, and
TNF-a have been implicated in the regulation of LC mi-
gration in murine models of atopic dermatitis and aged hu-
man skin, respectively (49, 50). Although the causative factors
that drive LC dysfunction in SLE models are not fully un-
derstood, it is possible that altered keratinocyte phenotypes
contribute to LC dysfunction, fueling a pathogenic feed-
forward circuitry that contributes to photosensitivity.

Monocyte- and neutrophil-mediated tissue injury. Monocytes have
been implicated to play a pathogenic role in photosensi-
tivity. In humans exposed to UVR, monocytes are among
the first cells that accumulate in the skin (51), although the
cellular infiltrate in established CLE lesions largely consists

FIGURE 3. Immune-stromal circuits in the skin that may contribute to photosensitivity. Protective circuits are denoted by blue arrows, pathogenic circuits by red

arrows, and circuits that can have dual roles by purple arrows. (A) LC-keratinocyte circuit. (B) Monocyte-epidermal circuit. (Ca) Keratinocyte-neutrophil circuit;

(Cb) neutrophil-endothelial cell circuit; (Cc) neutrophil–immune cell circuit. (D) IFN-I circuits involving IFN-I originating from (Da) immune cells and (Db)

stromal cells. (E) cGAMP originating from skin for systemic signal transmission. (F) Lymphatic flow and function that connects skin to draining lymph nodes and

systemic circulation. (G) Neuronal control of immunity. (H) Migration of skin-derived LCs and DCs connects skin events to draining lymph nodes. See text for

details.
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of T lymphocytes (52). In the MRL/lpr lupus model, UVR
caused keratinocytes and dermal fibroblasts to secrete CSF-1,
and experimental deletion of CSF-1 and the associated
reduction in myeloid cell accumulation prevented UVR-
induced lesion development (53). These results suggested
that myeloid cells are important contributors to lesion
development. In wild-type mice on a B6 background, UVR-
induced monocyte accumulation corresponded with an
upregulation of IFN-stimulated genes (ISGs), and monocyte
depletion in CCR2-DTR mice prevented ISG expression.
These data are consistent with the idea that monocytes can
be major producers of pathogenic IFN-I (54, 55). Monocyte
depletion also prevented UVR-induced increases in epidermal
permeability (24), suggesting that monocytes contribute
to skin damage in part by disrupting barrier integrity
(Fig. 3B). In tissues, monocyte phenotype and function are
in part modulated by stromal cells. For example, fibroblast-
derived CCL2, in addition to recruiting monocytes to the tissue,
can modulate monocyte reactive oxygen species production (56).
Additionally, notch ligands, potentially from endothelial cells,
can act with TLR ligands to modulate monocyte phenotype
and differentiation (57, 58). The fate of monocytes in skin [as
monocytes, monocyte-derived DCs, macrophages, or LCs (59,
60)] and how these cells interact with epidermal and dermal
stromal cells in photosensitivity remain to be better understood.
Neutrophils are also recruited to skin early after UVR ex-

posure. There, they phagocytose Ags released by dying kera-
tinocytes and are stimulated by UVR along with ICs of
autoantibodies with nuclear autoantigens from dead cells to
release neutrophil extracellular traps (Fig. 3Ca) (61). Netting
neutrophils can directly damage endothelial cells (Fig. 3Cb)
and the neutrophil extracellular traps, comprised in part by
oxidized nucleic acids known to be more resistant to degra-
dation, can induce pDC and other cells to upregulate IFN-I
production (Fig. 3Cc) (62, 63).

IFN-I in immune cell–stromal circuitry. IFN-I can be key
mediators in interactions between immune cells and
stromal cells in many settings and seems to play a role in
photosensitivity. An IFN-I signature is observed in both
lesional and nonlesional SLE skin (21, 64, 65), and UVR
can upregulate IFN-I in skin in humans and mice (51, 54,
66). Recently, clinical trials in SLE patients have shown
that anti-IFNAR1, anifrolumab, improves CLE (67, 68).
Although IFN-I appears to play a pathogenic role in
humans, the data in mice are less clear. Topical application of
TLR7 agonist imiquimod that drives IFN-I to wild-type B6 mice
was sufficient to cause autoimmunity and photosensitivity (69),
but global IFNAR deficiency exacerbated UVR-induced skin
lesions in otherwise wild-type (i.e., nonlupus) mice (54).
Whether this phenotype of global IFNAR deficiency
reflects in part the protective role of IFNAR in epithelial
maintenance and wound healing (70) remains to be seen.
However, recent efforts delineating the exact roles, sources,
and regulation of IFN-I at different time points after UVR
exposure are starting to paint a picture as discussed below.
Nucleic acids, likely from cell injury or death, seem to be a

key driver of the IFN-I response to UVR exposure. Elkon and
colleagues have shown an important role for cyclic GMP-AMP
synthase (cGAS), which detects cytosolic dsDNA and pro-
duces cGAMP that binds to the stimulator of IFN genes
(STING). STING then activates, via TBK1, IFN regulatory

factor 3 (IRF3) along with NF-kB, which function together
to turn on and amplify the transcription of IFN-I and other
proinflammatory cytokines (71, 72). In mice, global cGAS
and STING deficiencies were both associated with reduced
UVR-induced skin IFN-I signatures (54, 66). cGAS activity
was especially important at the earliest time point, 6 h, after a
single dose of UVR (66). Whether STING is important
during the same period of time was not tested, but STING
was required for both IFN-I signature and inflammatory cy-
tokine expression with a subacute multiday regimen. This
suggested that other DNA and RNA sensors that can also
activate STING (73, 74) may be involved at later time points.
In addition to potential involvement of different pathways
over time, the key cellular sources of cGAS and STING still
need to be worked out.
Immune cells may be important expressors of IFN-I

(Fig. 3Da) and pDCs in lesional skin have been implicated
as a major source (64). Consistent with this idea, depleting
pDCs in SLE patients with anti-BDCA2 led to reduced skin
IFN-I signatures and improved skin scores (75). In mice,
pDCs were necessary for tape stripping–induced lesions in the
NZBxNZW lupus model (76). However, other studies have
emphasized the importance of inflammatory monocytes over
pDCs in producing IFN-I (Fig. 3Da). In UVR-exposed lupus
patients, an increase in skin ISG expression correlated with
T cell and monocyte infiltration but not pDC accumulation
(51). Furthermore, a monocytic signature was observed in
lesions of CLE patients (77), and inflammatory monocytes,
but not pDCs, were also shown to be necessary for a UVR-
induced IFN-I signature in wild-type mice (54). Together, the
data point to monocytes and pDCs as the likely immune cell
that are key sources of or are necessary for IFN-I, although
work remains to better understand disease type and stage-
specific contributions.
Stromal cells may also be critical sources of IFN-I

(Fig. 3Db). UVR induced keratinocytes cultured from non-
lesional lupus skin to upregulate IFN-k (78), the only IFN-I
besides IFNA10 that was detected to be upregulated in CLE
lesions (29). In situ, IFN-k was expressed in both the epi-
dermis and dermis. Keratinocytes were a major source in
healthy skin and expressed IFN-k at higher levels in nonle-
sional SLE skin. Michelle Kahlenberg and colleagues (29)
recently showed that the keratinocyte IFN-k overexpression
contributed to their increased sensitivity to UVR-induced
apoptosis, amplified responses to other IFN-I, and could
stimulate DC activation. Keratinocytes are among the first
cells to sense UVR exposure, and their subsequent upregula-
tion of IFN-I may be one of the critical early events in
photosensitive responses. Although TLR stimulation will
upregulate keratinocyte IFN-I expression (78), cGAS and
STING are also functional in keratinocytes (79), and the early
cGAS-dependent upregulation of IFN-I after UVR (66) may
reflect keratinocyte rather than immune cell activity.
IFN-I can act on multiple immune and stromal cell types.

DCs, macrophages, B cells, and T cells can all respond to IFN-
I, stimulating downstream programs that can promote auto-
immunity when effects are unbalanced (80–82). Stromal cells
respond as well, with IFN-I presumably acting on keratino-
cytes to promote epithelial integrity during wound healing
(70) but, likely at higher levels, promoting sensitivity to
UVR-induced apoptosis and IL-6 expression (29, 78). Similar
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to the epithelium, endothelial cell barrier integrity is mediated
by IFN-I, but high IFN-I levels can induce vascular activation
and vasculopathy (83, 84). Fibroblasts can be activated by
IFN-I to adopt a proinflammatory phenotype (80). Successful
targeting of IFN-I in photosensitivity may have to be titrated,
leaving enough tonic IFN-I signaling to maintain proper
homeostatic tissue function, and consideration of IFN-l,
which can have similar effects (82, 85), may be needed.

From UVR exposure at the skin to systemic flare

A longstanding enigma has been how UVR exposure triggers
not only skin lesions but also flares of systemic disease. Sup-
porting the idea that the link between skin lesions and systemic
disease reflects similar pathogenic mechanisms in all affected
tissues is that the IFN-I gene expression signature found in SLE
blood cells (86–88) is also found in lesional skin and kidney
(21, 65, 89, 90). Remarkably, vascular activation in even
nonlesional skin of SLE patients with kidney disease paral-
leled vascular activation in kidneys (23), suggesting nonle-
sional skin was not only abnormal but also a potential
barometer of and accessible window into the systemic state.
This concept was further reinforced recently by the Accelerated
Medicines Partnership consortium that showed via single-cell
RNA sequencing that epithelial cells from both nonlesional
skin and diseased kidneys in SLE patients had IFN signatures
(65). Although these studies showed a clear connection be-
tween skin and systemic disease, the results do not establish that
skin lesions beget systemic disease.
In mice, there is evidence that UVR will induce systemic

effects that are relevant for SLE. BXSB male mice are a model
of severe SLE that developed high autoantibody levels, ne-
phritis, and eventually death after UVR exposure (91). The
NZM2328 lupus model also showed immune activation with
UVR, developing lymphadenopathy, increased IFN-b and
IFN-k in skin, and IFNAR-dependent activated T cell accu-
mulation and Treg suppression in lymph nodes (92). Keith
Elkon and colleagues (66) recently showed that UVR treat-
ment can lead to a rapid IFN-I response in skin that is
propagated to blood and kidneys of wild-type mice. The
systemic IFN-I response, like the early skin response, was
dependent on cGAS, and manipulation of extracellular cGAMP
levels modulated the systemic IFN-I response. These results
suggest a scenario whereby cGAMP generated in the skin
after UVR exposure could enter the circulation and induce a
systemic IFN-I response (Fig. 3E). It will be interesting to
further understand how the Treg effect in NZM2328 mice is
disseminated beyond the draining lymph nodes and how the
cGAMP circuit may operate differently in lupus models to
contribute to pathology.

Circuitry to be explored in photosensitivity

Lymphatics. The lymphatic system functions to reduce in-
flammation in part by removing fluid from inflamed tissues
and propagating tissue-specific information to the draining
lymph node via Ags, APCs, and cytokines. Increased vessel
permeability and/or reduced lymphatic flow increases the
magnitude and duration of UVR-induced skin inflammation as
seen with inhibition of lymphatic-dependent VEGFR3 or
VEGF-A overexpression–mediated vascular permeability
(93, 94). Supplementation of VEGFR3 ligands VEGF-C or
VEGF-D partially reduced UVR-induced damage (95, 96).

Interestingly, lymphatic function can also be modulated by
immune cells, with inflammatory cells including T cells
contributing to lymphatic dysfunction (97, 98) and IRF4-
dependent DCs maintaining lymphatic vessel integrity (99).
Although lymphatic vessels are not known to be dysfunctional
in SLE (100), the association of lymphatic dysfunction with
inflammation suggest the possibility of lymphatic-specific
contributions to lupus photosensitivity.
Althoughmoving interstitial fluid out of the skin may reduce

inflammation, reducing lymphatic flow may serve protective
purposes. Experimentally, reduction of lymphatic flow with
viral infection helped to limit systemic dissemination (101).
Lymphatic flow may play a critical role in connecting skin
pathology to systemic disease flares by transmitting patho-
genic signals such as IFN-I to the draining lymph node, where
it could help to activate responses or inhibit regulatory re-
sponses (92, 102). Or, taking the example of cGAMP dis-
cussed above, lymphatic vessels would bring cGAMP from the
interstitial fluid to the draining lymph node to be sent via the
efferent lymphatics to the blood circulation. Additionally,
once brought to the lymph node, soluble molecules can be
sent into the conduit system comprised by fibroblastic retic-
ular cells (FRCs) to the basement membrane of postcapillary
venules. From the basement membrane, molecules can tra-
verse the endothelium to the vessel lumen and be delivered to
the blood stream (103). Lymphatic vessels that drain the skin,
then, critically bridge skin signals to the systemic circulation
and may contribute to the induction of systemic disease flares
after UVR exposure (Fig. 3F).
In addition to transmitting proinflammatory signals, the

lymphatics transmit regulatory signals that act directly on
immune cells. Regulatory signals such as IL-10, Tregs, and DCs
with regulatory functions are all carried by lymphatic vessels
to the draining nodes (104–106). Interestingly, fluid transport
and DC migration to the lymph node are differentially af-
fected by lymphatic flow disruption (107), suggesting that
altered flow can lead to unbalanced information reaching the
lymph node. Lymphatic endothelial cells can also directly
promote T cell tolerance (108, 109) and induce DCs to adopt
a regulatory phenotype (110). Lymphatic flow or phenotypic
alterations, then, can modulate the information that reaches
the lymph node, which could potentially result in immune
dysregulation.

Neuronal-immune cell circuit. The skin is rich in sensory nerves
that innervate both the epidermis and dermis. Sensory
nerves with nociceptors that sense noxious stimuli can
release neuropeptides and neurotransmitters to modulate
skin-resident and immune cells (111). For example, a-melanocyte-
stimulating hormone (a-MSH) induces expansion of tolerogenic
DCs and Tregs and can dampen skin inflammation in a
psoriasis-like model. Ex vivo, a-MSH can reduce the
activity of pathogenic Th17 cells from psoriasis patients
(112). Similarly, the neurotransmitter dopamine can activate Tregs

(113). In contrast, nociceptor neurons activated by imiquimod
can induce dermal DCs to express IL-23, subsequent skin-
resident gd T cell expression of IL-17, and psoriasis-like
inflammation (114). This effect may reflect neuronal
expression of CGRP, which mediated a similar IL-17
response to Candida albicans infection (115). Interestingly,
UVR activates nociceptor neurons that can then medi-
ate vasodilation and other features of inflammation (116).
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Whether there is a role for nociceptor neurons in lupus
photosensitivity and UVR-induced systemic disease flares
remains to be determined (Fig. 3G).

LC and other APC migration. Although LCs and dermal DCs
migrate constitutively to draining lymph nodes to modulate
T cell responses, our findings that LCs can modulate
keratinocytes directly to limit UVR-mediated skin injury
raise the possibility that LCs may directly modulate lymph
node stromal cells (Fig. 3H). Classical DCs can modulate
vascular-stromal proliferation, growth, and survival with
lymph node stimulation and expansion (44, 117–119) as
well as FRC contractility to accommodate the expanding
lymph node (120, 121). Footpad injection of DCs can
stimulate lymph node endothelial and FRC proliferation, and
depletion of migratory DCs reduces OVA/CFA–induced
vascular-stromal expansion (118, 122, 123), supporting the
idea that migratory APCs contribute to this modulation. As
such, LCs could have contributed to studies that implicated
migratory APCs that used CD11c-DTR, CD11c-cre, or
CCR7-deficient mice (118, 120, 121, 123). How LC
ADAM17 dysfunction, in addition to its contributions in
photosensitivity, can affect lymph node function through
the vascular-stromal or lymphoid compartments remains to
be determined.

Conclusions
In this review, we have discussed and speculated on how
immune cell–stromal circuits in the skin can contribute to
photosensitivity and how UVR-induced effects on skin can
be associated with flares of systemic disease. The state of the
immune system and the tissues are inextricably linked, and
there is much to be better understood about the extent to
which tissue-modulating functions of immune cells and their
interactions with stromal cells contribute to disease.
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9. Vilá, L. M., A. M. Mayor, A. H. Valentı́n, S. I. Rodrı́guez, M. L. Reyes, E. Acosta,
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